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Precision medicine & patient stratification
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Biomarkers and subtypes

Definition: Biomarker

A measurable entity that is related to a biological state

Definition: Subtype

Distinct group of the patient population that can be defined by
phenotypic data (e.g. molecular phenotypes)



Two main modes of subtype discovery:
1) Data-driven unsupervised subtype discovery
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Two main modes of subtype discovery:
2) Outcome-driven supervised "subtype” discovery
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Example: Early success story - Intrinsic subtypes of
breast cancer; data-driven discovery; subtypes
associated with treatment response and prognosis

Parker JS, Mullins M, Cheang MC, et al. Supervised risk
predictor of breast cancer based on intrinsic subtypes. J Clin

Srlie T, Perou CM, Tibshirani R, et al. Gene expression patterns Oncol. 2000;27(8):1160-7.

of breast carcinomas distinguish tumor subclasses with clinical
implications. Proc Natl Acad Sci U S A. 2001;98(19):10869-74.



Example: Subtype-specific prognostic models to
guide adjuvant therapy in colorectal cancer
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Bramsen, J.B. et al., 2017. Molecular-Subtype-Specific
Biomarkers Improve Prediction of Prognosis in Colorectal
Cancer. Cell reports, 19(6), pp.12681280.
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Example: ldentification of type 2 diabetes
subgroups through analysis of patient similarity in
electronic medical records

» Subtype discovery based on 73 clinical features from EMRs

» Subtypes associated with SNPs and with distinct co-morbidities

Li, Li, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Science
translational medicine 7.311 (2015): 311ral74-311ral74.



Common limitations in subtype studies

v

Poor study design (study do not reflect the actual patient
population; poorly characterised patients)

v

Too small study size

v

Mainly descriptive analysis

v

Lack of proper validation (internal or external)



What can epidemiological approaches contribute
with?

» Study design (ensuring population representative studies)

» Opportunity to ascertain prevalence of subtypes (cohort
studies)

» Opportunity to estimate RR or HR associated with biomarker
or subtype status (cohort studies)

» + Comprehensive baseline characteristics and (registry-based)
outcomes



Subtype discovery and
validation process in the CLINSEQ-AML study
(Acute myeloid leukemia)

1. Mer, Arvind Singh, et al. " Expression levels of long non-coding RNAs are prognostic for AML outcome.”
Journal of hematology & oncology 11.1 (2018): 52.

2. Wang, M., et al. "Validation of risk stratification models in acute myeloid leukemia using sequencing-based
molecular profiling.” Leukemia 31.10 (2017): 2029.

3. Wang, Mei, et al. "Development and Validation of a Novel RNA SequencingBased Prognostic Score for Acute
Myeloid Leukemia.” JNCI: Journal of the National Cancer Institute 110.10 (2018): 1094-1101.



Sequencing-based cancer diagnostics

» RNAseq ( 25M reads per tumour)
» Expression profiles (for subtyping) (including IncRNA)
» Validation of point mutations
» Low-pass whole genome sequencing ( 0.5-1x coverage)
» CNV profile
» Panel DNA sequencing (650 genes, >300x average coverage)

» Point mutations and indels

» Pharmacogenomic loci
» Germline risk variants
(Molecular phenotyping is based on biobanked material taken prior to

treatment. Comprehensive clinical information and registry-based
outcomes are available.)



Study design
Retrospective cohort of AML patients (N=274).

» Population representative and well-characterised cohort
» Possible to estimate subtype prevalence
> Possible to estimate subtype prognosis (HR)

> Reduced risk for selection bias (improved generalisability of models)

Biobanking at time of

diagnosis (inclusion)
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Overview of our discovery and validation process
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Subtype discovery through clustering

Relative importance of different factors in the discovery process
(from experience):

study design > features > dissimilarity metric > clustering algorithm

Objectives:

» Estimate the number of clusters, K, from data, (X)

» Learn the subgroups, from data (X)



Consensus clustering offer improved robustness

> Ensemble-based approach to clustering

» Improved stability of clusters (robustness against noise as well as starting
conditions)

Algorithm 1 Pseudo-code: Consensus clustering

1: for k =1: ke do

2 while i < iy, do

3 asyp = Draw subsample of observations

4 bsup = Draw subsample of features

5: Clustering: f(Xq, ;6.0 %) (e.8. k-medoids or iCluster)
6 Save results into the consensus matrix [N x N]

7 end while

8 Save final consensus matrix for k

9: end for

10: Determine optimal k (model selection)




1. Consensus clustering (kK =2...5)
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2. Prognostic stratification by subtypes (OS and
EFS)
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3. Internal validation of consistency in subtype
prediction provide some ascertainment of the
reproducibility of the subtypes

Cross-validation
split
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Subtype classification accuracy of 0.85 (cross-validation of the
whole discovery process)



4. External validation of prognostic stratification
(TCGA-AML)

1. Subtype discovery in primary ©h
study (CLINSEQ-AML)

2. Supervised subtype classifier 078
optimised on primary study
(CLINSEQ-AML) I

3. Subtype classifier applied to
external study (TCGA-AML)

4. Validation of prognostic
stratification by predicted
subtype in external study T
(TCGA-AML)
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- pathway analysis by

itative interpretation
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Examples of commonly observed limitations in
biomarker and subtype focused studies



Many reported subtype discovery studies (and
outcome associations) may not be reproducible

There are many published studies that simply has no validation
results, or only have some descriptive or qualitative analysis.

Proper validation of reported subtypes would almost surely help
the field forward:

1. Internal empirical assessment of whether cluster labels can be
predicted (supervised learning)

2. External retrospective validation

3. Prospective validation



In data-driven subtype discovery study size will limit
detection of subtypes with low prevalence

ASubtype prevalence Required study size

>

In diseases with potentially many, but low prevalence subtypes, this
will limit efficient data-driven subtype discovery



In cancer focused studies, the "bulk” level average
subtype often masks intra-tumour subtype
heterogeneity

Intra-tumour
heterogeneity

/
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Stochastic variability
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Generalisability of subtype stratification models can
be limited by several factors
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Can generalisability of subtype models improve by
translation to rule-based classifiers?

A classifier based on a set of K rules, of the type z; < x;, reduce
the dependency on perfect normalization of data.

Algorithm 2 Pseudo-code: training of a rule-based model using
data, X, and subtype labels, y

1: 0 = f(X,y) (Heuristic search to establish a set of decision
rules, 0, based on pairs (i, j) of features in X to maximise class
separation)

2: I, = f(X,60) (Apply discovered rules to generate, I,)

3: Train a classification model on I, and labels, y (e.g. Naive
Bayes)

Eric R. Paquet, Michael T. Hallett; Absolute Assignment of Breast Cancer Intrinsic Molecular Subtype, JNCI:
Journal of the National Cancer Institute, Volume 107, Issue 1, 1 January 2015,



Concluding remarks

1. Study design is of central importance in the discovery phase
(improve generalisability, minimize selection bias, enable
time-to-event analyses, etc.)

2. Data-driven subtype discovery should probably be performed
in well-defined cohorts (followed by potential trial post-hoc
analyses)

3. Validation and demonstration of generalisability necessary
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